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Abstract— Robust and reliable Simultaneous Localization
and Mapping (SLAM) systems are crucial for safety-critical
applications such as mobile robots and autonomous driving.
The past few years have witnessed significant advancements in
RGB-based SLAM. While most of the previous works have im-
proved the performance of RGB-based SLAM through modern
learning methods and novel optimization algorithms, notable
degradation in SLAM performance under diverse conditions
has been consistently observed. In addition, there exists a
scarcity of datasets that cover diverse environments, which are
crucial for assessing and enhancing the robustness of SLAM
systems. To this end, we propose UMDrive, a comprehensive
full-cycle pipeline encompassing data generation, SLAM op-
timization, and downstream evaluations. Our pipeline makes
three appealing contributions. 1) To improve the robustness of
SLAM in dynamic environments, we propose a novel generative
in-painting method for dynamic objects. 2) We propose a novel
assessment metric based on frame drop rates to identify the
most reliable SLAM systems. 3) Centered around the theme
of robust and reliable SLAM, we establish a systematic data
generation platform in CALRA to synthesize RGB data under
diverse conditions. Extensive experiments demonstrate that
our framework can evaluate and optimize the performance
of SLAM systems. Our code for the framework is publicly
accessible at https://github.com/ywyeli/UMDrive.

I. INTRODUCTION

The increasing deployment of mobile robots in environ-
ments characterized by complexity and dynamism [1], [2],
referred to as noisy worlds, highlights the imperative need
for enhanced robustness in robotic systems. This robustness
is crucial for maintaining effective functionality amidst dis-
ruptive influences. As such, the evaluation of robustness in
these scenarios has become a vital area of research [3].
At the heart of this research lies Simultaneous Localization
and Mapping (SLAM) [4], [5], a cornerstone technology for
robotic autonomy. The primary challenge is thus to develop
a reliable and comprehensive framework for assessing the
resilience of SLAM systems against diverse disturbances.

Recent progress in the evaluation of SLAM systems has
been largely concentrated on the compilation of challenging
datasets. These datasets subject SLAM systems to spe-
cific environmental conditions that deteriorate performance,
thereby enriching our understanding of the operational chal-
lenges in real-world scenarios [6]–[9]. However, the prac-
tical challenges of data collection and labeling in natural
settings restrict the size of these datasets, limiting a thorough
and expansive evaluation. Furthermore, the complex interac-
tions among environmental variables complicate the task of
pinpointing the effects of specific disturbances on SLAM
performance. To address these challenges, simulation-based
benchmarks have gained traction as a valuable alternative [3],

(a) Feature extraction in the clean condition

(b) Feature extraction in the rain condition

(c) Feature extraction in the fog condition

Fig. 1. Qualitative analysis of feature extraction process of SLAM in clean,
rain, and fog conditions.

[10]–[13]. These simulations provide a platform for generat-
ing limitless ’battlefields’ where data scalability and diversity
enhance the ’survival testing’ of SLAM models. They also
allow for the creation of highly customizable and increas-
ingly challenging scenarios, fostering ongoing improvements
in SLAM robustness [12]. Although current simulators may
lack complete real-world accuracy, advancements in visual
content synthesis are progressively narrowing this fidelity
gap [14], [15].

Despite the increasing availability of (nearly) photo-
realistic 3D scene datasets and simulators [16]–[19] for
SLAM evaluation, they often lack varied and controllable
disturbances. As a result, these simulations typically repre-
sent idealized, perturbation-free environments, i.e., perfect
world, leaving the simulated perturbed environment, i.e.,
noisy world, largely unexplored.

In this work, we propose an innovative simulation frame-
work to emulate a broad spectrum of environmental chal-
lenges, such as rain and fog weather, thereby enhancing
the assessment and development of SLAM systems. In-
corporating dynamic simulations and generative inpainting
techniques, the framework addresses issues arising from oc-
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Fig. 2. Overview of our evaluation pipeline for Outdoor SLAM.

clusions and the presence of dynamic objects. Such simula-
tions allow for testing SLAM performance where traditional
static mapping approaches fail due to rapid environmental
changes. To summarize, this work makes the following key
contributions:

• We propose UMDrive, a comprehensive pipeline en-
compassing data generation, SLAM system optimiza-
tion, and downstream evaluations.

• To improve the robustness of SLAM in dynamic en-
vironments, we propose a novel generative in-painting
method for dynamic objects.

• We propose a novel assessment metric based on frame
drop rates to identify the most reliable SLAM systems.

• Centered around robust and reliable SLAM, we estab-
lish a systematic data generation platform in CALRA
to synthesize RGB data under diverse conditions.

II. RELATED WORK

A. SLAM Methods

This section focuses on visual-related SLAM systems,
though comprehensive reviews of SLAM systems are avail-
able in various sources, including [4], [20], [21]. Classical
single-modal SLAM methods such as the visual-only ORB-
SLAM [22] have achieved remarkable accuracy in clean
benchmark environments like TUM VI [8] and Replica
[16]. Addressing the challenges of real-world environments,
research has explored techniques [23]–[26] that integrate
multi-view sensors and fuse different data modalities, in-
cluding visual-inertia and RGBD. The development of multi-
agent SLAM models [27]–[29] has enabled collaborative
localization and mapping among diverse robots, improving
robustness in navigation. Furthermore, approaches leveraging
neural networks and neural representations [12], [30]–[35]
have enhanced generalization capabilities and 3D map recon-
struction quality. However, the robustness of these models
against sensor corruption and motion perturbations needs
further exploration.

B. Robustness Benchmark

For mobile robots, perception modules must demonstrate
resilience against shifts in natural distributions [36]. The
benchmark ImageNet-C [37] has been pivotal in studying

image corruption robustness by evaluating image classifi-
cation methods against typical corruptions and perturba-
tions. Subsequent studies have broadened this investigation
to include other perception tasks such as object detection
[38]–[40], segmentation [41]–[43], and embodied navigation
[3], [44]. In SLAM, challenges include not only image-
level corruptions from camera malfunctions but also dynamic
variations in sensor corruption and sensor transformation
deviations over time due to time-variant environmental ef-
fects and robots’ diverse movements. This study introduces
a perturbation taxonomy for RGBD SLAM in dynamic
environments (e.g., varying illumination) and unstructured
environments (e.g., uneven terrains causing vibrations for
mobile robots).

C. Robustness Evaluation for SLAM

The robustness of SLAM systems is crucial for their
reliable and accurate operation in dynamic and challenging
real-world environments [4]. This robustness is vital for
managing sensor faults and ensuring sustained performance.
To facilitate robustness evaluation, several datasets have
been collected in degraded environments with challenges
like low illumination or motion blur [2], [8], [9], [45],
[46]. SLAMBench [47] has compared the performance of
various classical SLAM models across multiple challenging
datasets, highlighting their vulnerabilities. Considering the
difficulties and limitations of creating real-world datasets
via robot platforms, Wang et al. [48] have employed photo-
realistic simulation environments to develop TartanAir, a
simulated SLAM benchmark for robustness evaluation. This
study extends the evaluation scope to include the robustness
of multi-modal SLAM models—covering both classical and
neural methods—against a wider array of sensor corruptions
and motion patterns (e.g., varying speed and motion-induced
sensor trajectory deviations).

III. METHODOLOGY

A. Evaluation Pipeline

Our primary objective is to generate a challenging image
sequence capable of capturing and replicating extreme real-
world scenarios. Figure 2 illustrates the overall workflow of
our methodology. We can incorporate simulator data gener-
ated by CARLA Simulator [11] as well as real-world data
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obtained from videos. Since arbitrary real-world video se-
quences lack ground truth camera pose, we employ Colmap
for structure-from-motion [49] with loop closure to estimate
a reliable camera trajectory, serving as the ground truth
trajectory. Subsequently, various types of noise, such as rain,
fog, and dynamic objects, are introduced into the image
sequence to heighten the level of difficulty. Optionally, a
generative inpainting method may be applied to enhance
SLAM performance when dynamic objects are present;
further details are discussed in Section III-B. Finally, we
employ state-of-the-art algorithms, such as ORB-SLAM 2/3
and DeepVO, to estimate the trajectory and calculate errors
using the Absolute Trajectory Error (ATE).

B. Generative inpainting for dynamic objects

As indicated by our experimental results in Section IV and
supported by findings in [50], dynamic objects in uncertain
environments pose significant challenges to existing SLAM
models. Traditionally, SLAM algorithms rely on building
maps of static environments with stationary objects to ac-
curately localize the robot and update the map. However,
the presence of dynamic objects disrupts this assumption,
introducing considerable noise to the model. Specifically,
observations of dynamic objects may yield a set of point
clouds, features, etc., in frame t, and a different set of point
clouds and features in frame t+1. But, because the object
has changed its position in space, matching these features
between frames becomes more challenging due to these
inconsistent observations.

In [50], the authors propose a novel framework called
DynaSLAM, which effectively addresses the challenge posed
by dynamic objects. They employ the state-of-the-art Mask
R-CNN model [51] to initially detect segments of dynamic
objects such as humans and cars. Utilizing the binary masks
generated by Mask R-CNN, the SLAM algorithms then
disregard the features detected within regions masked out
by dynamic objects. To enhance the algorithm’s robustness,
if the ground truth static background of the mask area is
observed in previous frames, they replace the area covered by
dynamic objects with the ground truth background projected
to the current camera position. This substitution of dynamic
objects with static ones ensures more consistent feature de-
tection and enhances the overall robustness of the algorithm.

However, the framework has a limitation. If there are areas
consistently not observed, such as in heavy traffic scenarios
where the background behind a stream of moving cars is
never observed, then a large number of areas are discarded
by the algorithm and do not contribute to feature detection
and matching. In an attempt to address this problem, we
propose a simple extension involving generative inpainting.
This extension allows the model to infer the background
behind dynamic objects when ground truth information is
insufficient to replace all dynamic objects with static back-
grounds.

To achieve the above idea, we adopt a similar Mask R-
CNN model provided by YOLOv8 [52] and a generative
inpainting model provided by LaMa inpainting model [53]

Fig. 3. Generative inpainting model LaMa is able to take in RGB image and
the binary mask of target inpainting area to paint the inferred background

(Other choices of generative inpainting models are discussed
in IV).

LaMa is robust and generalizable due to its ability to
encode global and local contexts with high receptive fields.
Specifically, they use Fast Fourier Convolution (FFC) [54]
that uses Fast Fourier Transform (FFT) to retain this global
context in the early stage. In FFC, we have

1) apply Real FFT2d to the input tensor (image + mask)

Real FFT 2d : RH×W×C → CH×W
2 ×C

2) combine the real and imaginary parts

ComplexToReal : CH×W
2 ×C → RH×W

2 ×2C

3) frequency domain convolution

ReLU ◦BN ◦Conv1×1 : RH×W
2 ×C → RH×W

2 ×2C

4) apply inverse transform to recover a spatial structure

RealToComplex : RH×W
2 ×2C → CH×W

2 ×C

Inverse Real FFT 2d : CH×W
2 ×C → RH×W×2C

Finally, by combining the global contexts from FFC and
local contexts from conventional convolutions, LaMa is able
to create better generative backgrounds to the masked areas.

IV. EXPERIMENTS

A. Experiment Setup

We tested all SLAM algorithms used in our work on the
generated synthetic dataset. In addition, to bridge the gap
of the effects of our improving methods between simulation
and the real world, we test our generative inpainting method
on the real-world TUM dataset [55].

B. Experimental Results

Supervised Learning-based Visual Odometry. In Figure
5(b), the DeepVO model’s trajectory estimation under incre-
mental fog densities is appraised, revealing its proficiency
in clear weather and the ensuing decrement in accuracy
with intensifying fog. Notably, the model’s performance
exhibits a marked fidelity to the ground truth in optimal
visual conditions, signifying the robustness of its feature

3



(a) (b) (c) (d)

Fig. 4. Qualitative comparison among inpainting models reveals that LaMa (top-left) outperforms all other models, including MIGAN (top-right), MAT
(bottom-left), and LDM (bottom-right), by generating fewer artifacts. The ground truth image is identical to that shown in 3

(a) DeepVO in clean and rain conditions (b) DeepVO in clean and fog conditions

(c) ORB-SLAM3 in clean and rain conditions (d) ORB-SLAM3 in clean and fog conditions

Fig. 5. Comparative analysis of selected visual odometry in this work for clean, rain, and fog conditions.

extraction capabilities. However, the augmenting fog con-
ditions precipitate a decline in trajectory precision, with
the most pronounced divergence observed during intricate
navigational maneuvers, indicative of the perturbed feature
extraction by the convolutional neural network.

Correspondingly, Figure 5(a) demonstrates the DeepVO
model’s performance on simulated rainfall. It becomes evi-
dent that as precipitation intensifies, the model’s trajectory
estimates progressively deviate from the ground truth. This
deviation, attributed to the rain-induced visual disruptions,
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underscores the susceptibility of the model’s pre-trained
parameters to the stochastic visual patterns presented by
rainfall.

In essence, while DeepVO is adept at navigating clear
environmental conditions, the vicissitudes presented by fog
and rain elucidate the need for an enriched training paradigm.
The incorporation of a panoply of adverse weather scenarios
is imperative for the advancement of the model’s general-
ization capabilities. Such enhancement is essential for the
realization of robust autonomous navigation systems capable
of operating reliably in the multifaceted and unpredictable
dynamics of real-world settings.

Featured-based Visual Odometry. Figures 5(c) and 5(d)
demonstrate the trajectory estimation challenges encountered
by ORB-SLAM3, a traditional feature-based SLAM method,
under adverse weather conditions. Notably, ORB-SLAM3’s
performance is significantly impeded by foggy scenarios,
as visualized in Figure 5(d), where the deviation from the
ground truth trajectory is pronounced. This performance
impediment can be attributed to the fog’s obscuration of
critical features within the environment, which are essential
for the SLAM algorithm to maintain spatial awareness and
localization accuracy.

The extracted features, integral to ORB-SLAM3’s opera-
tion as illustrated in Figures 1(a), 1(b), and 1(c), become in-
creasingly sparse and unreliable in fog, leading to trajectory
estimations that substantially diverge from the ground truth.
Moreover, the method’s susceptibility to rapid turns and other
swift motions exacerbates this divergence, as these dynamic
conditions further challenge the feature tracking capabilities
of the algorithm.

Comparison. For quantitative analysis of the methods in
this experiment, the error metric we adopt is the absolute
trajectory error (ATE) proposed by Sturm et al. [56]. Using
the sequences of estimated trajectory P1:n and ground truth
trajectory Q1:n, the ATE at a certain time step i can be
computed as:

Ei = Q−1
i SPi

where S is a rigid body transformation matrix that maps
the estimated trajectory onto the ground truth trajectory. The
rooted mean squared error (RMSE) over all time indices is
computed as:

RMSE(Ei:n) = (
1
n

n

∑
i=1

||trans(Ei)||2)1/2

The ATE for ORB-SLAM3 and deepVO are shown in
table I. Notice how DeepVO achieved a much lower error
compared to ORB-SLAM3 in the fog environment. It is
due to the fact that well-trained DeepVO networks tend to
accumulate larger errors with noisier environment input, but
does not have the problem of totally losing track, which can
be a problem of feature-based visual odometries including
ORB-SLAM. It is also evident that ORB-SLAM3 largely
outperformed DeepVO in rain. It implies the ability of ORB-
SLAM to restore orientation based on scale-invariant features
from different levels in the pyramid (and thus different

TABLE I
ABSOLUTE TRAJECTORY ERROR FOR DEEPVO AND ORBSLAM3

Conditions ORB-SLAM3 (m) ↓ DeepVO (m) ↓
Clean 13.989 14.693
Rain 16.816 37.249
Fog 104.852 26.327

Dynamic 20.066 –

TABLE II
ABSOLUTE TRAJECTORY ERROR FOR DIFFERENT FRAME DROP RATES

Conditions 0.5fps ↓ 1fps ↓ 2fps ↓
Clean 40.403 26.075 30.156
Rain 25.208 26.159 50.186

distances to the camera). On the other hand, rain can be
attached to the camera lens in our dataset. The random large
areas of blurred pixels could have an impact on the CNN in
DeepVO.

A comparative analysis reveals that both DeepVO and
ORB-SLAM3 maintain high fidelity to the ground truth in
clear conditions, implying robustness in normal environmen-
tal settings. Under rainfall, both methods suffer performance
losses, yet the extent and nature of the deviations differ.
DeepVO shows a tendency for smoother trajectory devia-
tions, possibly due to its reliance on learned features which
may generalize better in varied conditions. In contrast, ORB-
SLAM3 exhibits sharper departures from the ground truth,
which could be due to the loss of reliable feature points
in the rain, a challenge for feature-based methods that rely
heavily on the distinctiveness and matchability of features
across frames.

In addition, in clear conditions and normal operational
scenarios, as reflected in Figure 5(c), ORB-SLAM3 tends to
outperform learning-based methods like DeepVO, displaying
a trajectory closely aligned with the ground truth. This supe-
riority in nominal cases suggests that in environments with
abundant and stable visual features, ORB-SLAM3 is well-
equipped to provide accurate and reliable pose estimation. It
underscores the potential for feature-based methods in appli-
cations where environmental conditions can be controlled or
predicted with a high degree of certainty.

Generative inpainting model. we conduct comparative
analyses of the state-of-the-art generative inpainting models.
We include LaMa, MAT [57], MIGAN [58], and LDM [59]
in our comparison. These models are showcased in Fig. 4,
where each is assessed for its ability to seamlessly inpainting
images. This comparison helps in identifying which model
performs best under various conditions and contributes to
advancements in the field of Visual Odometry.

Influence of Frame Drops. Frame drops are also a
problem for visual SLAM systems that have a large impact
on robustness and accuracy. It can not only appear due to
hardware or software limitations and issues, but also arise
from motion blur, occlusions, and varying lighting condi-
tions. Those environmental factors are present in different
weathers and can cause data to be unavailable for the system.
We run an extra experiment to test the influence of frame
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(a) Frame drops in clean condition (b) Frame drops in rain condition

Fig. 6. Comparison of different frame drop rates on Clean and Rain datasets

drop on the traditional feature-based ORB-SLAM2. Two
conditions where ORB-SLAM performs the best – clean and
rain – were selected as experiment groups. We tried three
frame drop rates: 0.5fps, 1fps, 2fps, equivalent to dropping
one frame in every 20, 10, or 5 frames, with our camera
frequency at 10 fps. A sliding time window of those lengths
was applied to the collected data, and a random frame was
dropped within every window. ORB-SLAM2 was then run
on the processed data respectively.

Figure 6 shows estimated and ground truth trajectories in
the two scenarios. Absolute trajectory errors are computed
and listed in Table II. In general, as frame drops become
more frequent, the quality and accuracy of trajectory esti-
mation decrease. However, it is not always the case, as is
evident in the clean condition, where frame drop rates of both
2fps and 0.5fps cause the system to lose track at a corner
while 1fps gives the best tracking result. During running, we
observed a significant drop in the number of matched features
when the system processed frames adjacent to the dropped
frames. Given also the fact that loss of track happens during
turns at sharp corners, we conclude ORB-SLAM is not robust
when handling large camera motions or frequent drop of
frames. They cause a large difference between consecutive
frames, and make it hard for feature tracking, especially
matching feature points between frames. With the feature-
learning abilities and temporal information, learning-based
methods are likely more robust in the presence of dropped
frames and large motions.

V. CONCLUSION

This work presents a new framework designed to assess
the robustness of visual odometry systems using diverse
environmental simulations. It addresses current challenges
in SLAM technologies by providing a customizable way to
generate virtual datasets, which include dynamic obstacles
and varying weather conditions for comprehensive system

evaluations. Key contributions include a rigorous testing
environment and the integration of advanced models like
DeepVO and ORB-SLAM2/3. The research highlights both
the potential and limitations of learning-based methods in
adapting to environmental changes and underscores the need
for ongoing research to enhance the resilience and reliability
of SLAM systems for autonomous navigation in complex
real-world scenarios.
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